Critical Exponent for Gap Filling at Crisis.

نویسندگان

  • Szabó
  • Lai
  • Tél
  • Grebogi
چکیده

A crisis in chaotic dynamical systems is characterized by the conversion of a nonattracting, Cantorset-like chaotic saddle into a chaotic attractor. The gaps in between various pieces of the chaotic saddle are densely filled after the crisis. We give a quantitative scaling theory for the growth of the topological entropy for a major class of crises, the interior crisis. The theory is confirmed by numerical experiments. [S0031-9007(96)01224-0]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wedge filling , cone filling and the strong - fluctuation regime

Interfacial fluctuation effects occuring at wedge and cone filling transitions are investigated and shown to exhibit very different characteristics. For both geometries we show how the conditions for observing critical (continuous) filling are much less restrictive than for critical wetting, which is known to require fine tuning of the Hamaker constants. Wedge filling is critical if the wetting...

متن کامل

Topological scaling and gap filling at crisis

Scaling laws associated with an interior crisis of chaotic dynamical systems are studied. We argue that open gaps of the chaotic set become densely filled at the crisis due to the sudden appearance of unstable periodic orbits with extremely long periods. We formulate a scaling theory for the associated growth of the topological entropy.

متن کامل

Critical exponent of chaotic transients in nonlinear dynamical systems.

The average lifetime of a chaotic transient versus a system parameter is studied for the case wherein a chaotic attractor is converted into a chaotic transient upon collision with its basin boundary (a crisis). Typically the a~erage lifetime T depends upon the system parameter p via T —~p —p, ~ &, where p, denotes the value of p at the crisis and we caII y the critical exponent of the chaotic t...

متن کامل

Asymmetric exclusion model with impurities.

An integrable asymmetric exclusion process with impurities is formulated. The model displays the full spectrum of the stochastic asymmetric XXZ chain plus new levels. We derive the Bethe equations and calculate the spectral gap for the totally asymmetric diffusion at half filling. While the standard asymmetric exclusion process without impurities belongs to the KPZ universality class with an ex...

متن کامل

Wedge covariance for 2 D filling and wetting

A comprehensive theory of interfacial fluctuation effects occurring at 2D wedge (corner) filling transitions in pure (thermal disorder) and impure (random bond-disorder) systems is presented. Scaling theory and the explicit results of transfer matrix and replica trick studies of interfacial Hamiltonian models reveal that, for almost all examples of intermolecular forces, the critical behaviour ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review letters

دوره 77 15  شماره 

صفحات  -

تاریخ انتشار 1996